Coarse-grained force field for simulating polymer-tethered silsesquioxane self-assembly in solution.

نویسندگان

  • Elaine R Chan
  • Alberto Striolo
  • Clare McCabe
  • Peter T Cummings
  • Sharon C Glotzer
چکیده

A coarse-grained model has been developed for simulating the self-assembly of nonyl-tethered polyhedral oligomeric silsesquioxane (POSS) nanoparticles in solution. A mapping scheme for groups of atoms in the atomistic molecule onto beads in the coarse-grained model was established. The coarse-grained force field consists of solvent-mediated effective interaction potentials that were derived via a structural-based coarse-graining numerical iteration scheme. The force field was obtained from initial guesses that were refined through two different iteration algorithms. The coarse-graining scheme was validated by comparing the aggregation of POSS molecules observed in simulations of the coarse-grained model to that observed in all-atom simulations containing explicit solvent. At 300 K the effective coarse-grained potentials obtained from different initial guesses are comparable to each other. At 400 K the differences between the force fields obtained from different initial guesses, although small, are noticeable. The use of a different iteration algorithm employing identical initial guesses resulted in the same overall effective potentials for bare cube corner bead sites. In both the coarse-grained and all-atom simulations, small aggregates of POSS molecules were observed with similar local packings of the silsesquioxane cages and tether conformations. The coarse-grained model afforded a savings in computing time of roughly two orders of magnitude. Further comparisons were made between the coarse-grained monotethered POSS model developed here and a minimal model developed in earlier work. The results suggest that the interactions between POSS cages are long ranged and are captured by the coarse-grained model developed here. The minimal model is suitable for capturing the local intermolecular packing of POSS cubes at short separation distances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoscale Computer Simulations of Polymer-tethered Organic/inorganic Nanocube Self-assembly

A molecular simulation study of the mesoscale self-assembly of tethered nanoparticles having a cubic geometry is presented. Minimal models of the tethered nanocubes are developed to represent a polyhedral oligomeric silsesquioxane (POSS) molecule with polymeric substituents. The models incorporate some of the essential structural features and interaction specificity of POSS molecules, and facil...

متن کامل

A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly.

Peptide self-assembly plays a role in a number of diseases, in pharmaceutical degradation, and in emerging biomaterials. Here, we aim to develop an accurate molecular-scale picture of this process using a multiscale computational approach. Recently, Shell (Shell, M. S. J. Chem. Phys. 2008, 129, 144108-7) developed a coarse-graining methodology that is based on a thermodynamic quantity called th...

متن کامل

YUP: A Molecular Simulation Program for Coarse-Grained and Multi-Scaled Models.

Coarse-grained models can be very different from all-atom models and are highly varied. Each class of model is assembled very differently and some models need customized versions of the standard molecular mechanics methods. The most flexible way to meet these diverse needs is to provide access to internal data structures and a programming language to manipulate these structures. We have created...

متن کامل

Simulations of Organic-tethered Silsesquioxane Nanocube Assemblies

Polyhedral oligomeric silsesquioxane (POSS) based materials are a class of organic/inorganic hybrid nanomaterials with many interesting properties. Recent experiments have demonstrated that self-assembly of tethered POSS nanocubes is a promising route to the synthesis of novel materials with highly ordered, complex nanostructures. Using a coarsegrained model developed for tethered POSS, we perf...

متن کامل

Mean-field models of structure and dispersion of polymer-nanoparticle mixtures

We review some recent research developments in coarse-grained modeling based on mean-field approaches of the equilibrium dispersion and structure of polymer nanoparticle composites. We focus on three issues: (i) dispersion and phase behavior of particles in homopolymer matrices; (ii) dispersion in mixtures of homopolymers with grafted nanoparticles; (iii) self-assembly and organization of nanop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 127 11  شماره 

صفحات  -

تاریخ انتشار 2007